Nontrivial homoclinic orbits for second-order singular and periodic Hamiltonian systems  被引量:1

Nontrivial homoclinic orbits for second-order singular and periodic Hamiltonian systems

在线阅读下载全文

作  者:LI Chengyue , FAN Tianyou TONG MingshengResearch Center of Materials Science, Beijing Institute of Technology, Beijing 100081, China  Department of Mathematics, Central University for Nationalities, Beijing 100081, China  Computer Center, Beijing Institute of Technology, Beijing 100081, China 

出  处:《Chinese Science Bulletin》1999年第2期123-129,共7页

摘  要:The existence of nontrivial homoclinic orbits of periodic Hamiltonian systems: is proved, where q=(q<sub>1</sub>,q<sub>2</sub>,’',q<sub>n</sub>), n】2; V(t, q):R<sup>1</sup>×R<sup>n</sup>\{e}→R<sup>1</sup> is a potential With a singularity, i.e. -V(t, q)→+∞, as q→e. The main assumptions are Gordon-strong force condion and the uniqueness of a global maximum of V(t, q).The existence of nontrivial homoclinic orbits of periodic Hamiltonian systems:q + V′q(t, q) = 0 is proved, whereq = (q 1,q 2,...,q n),n> 2;V(t, q): ?1 × ?n |e| → ?1 is a potential with a singularity, i.e. -V(t, q)→+∞, asq→e. The main assumptions are Gordon-strong force condion and the uniqueness of a global maximum ofV(t, q).

关 键 词:HAMILTONIAN systems strong force condition HOMOCLINIC orbit. 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象