A categorical interpretation of Yetter-Drinfel'd modules  

A categorical interpretation of Yetter-Drinfel' d modules

在线阅读下载全文

作  者:KAN Haibin and WANG ShuanhongInstitute of Mathematics , Fudan University , Shanghai 200433 , China  Department of Mathematics , Henan Normal University, Xinxiang 453002, China 

出  处:《Chinese Science Bulletin》1999年第9期771-778,共8页

摘  要:It is known that any strict tensor category (C, I) can determine a strict braided tensor category Z ( C), the centre of C. When A is a finite Hopf algebra, Drinfel’d has proved that Z(<sub>A</sub>M) is equivalent to <sub>D(A)</sub>M as a braided tensor category, where <sub>A</sub>M is the left A-module category, and D (A) is the Drinfel’d double of A. This is the categorical interpretation of D (A).Z(<sub>4</sub>M) is proved to be equivalent to the Yetter-Drinfel’ d module category <sub>A</sub>Y D<sup>4</sup> as a braided tensor category for any Hopf algebra A. Furthermore, for right A-comodule category M<sup>A</sup> , Z(M<sup>A</sup>) is proved to be equivalent to the Yetter-Drinfel’ d module category <sub>A</sub>Y D<sup>4</sup> as a braided tensor category. But, in the two cases, the Yetter-Drinfel’ d module category <sub>A</sub>Y D<sup>A</sup> has different braided tensor structures.It is known that any strict tensor category (C,?,I) can determine a strict braided tensor categoryZ(C), the centre ofC. WhenA is a finite Hopf algebra, Drinfel’d has proved thatZ( AM) is equivalent toD(A)M as a braided tensor category, whereAM is the left A-module category, andD(A) is the Drinfel’d double ofA. This is the categorical interpretation ofD(A). Z( AM) is proved to be equivalent to the Yetter-Drinfel’d module category,AYD A as a braided tensor category for any Hopf algebraA. Furthermore, for right A-comodule categoryM A, Z(MA) is proved to be equivalent to the Yetter-Drinfel’d module categoryAY DA as a braided tensor category. But,in the two cases, the Yetter-Drinfel’d module categoryAY DA has different braided tensor structures.

关 键 词:Yetter-Drinfel’d module TENSOR CATEGORY equivalence. 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象