SHIFT-INVARIANT BI-INNER PRODUCT FUNCTIONALS ARE INNER PRODUCTS  被引量:10

SHIFT-INVARIANT BI-INNER PRODUCT FUNCTIONALS ARE INNER PRODUCTS

在线阅读下载全文

作  者:Charles K. Chui (1)   Xianliang Shi (1) 

机构地区:[1]1. Department of Mathematics, Texas A & M University, 77843-3368, College Station, TX, USA

出  处:《Analysis in Theory and Applications》1999年第1期103-110,共8页分析理论与应用(英文刊)

摘  要:Bi-inner product functionals generated by a pair of Bessel sequences of L2 functions are introduced. It is shown that these functionals are constant multiples of the inner products of L2 and l2, if and only if they are shift-invariant both in space (or time) and in phase. This result is then applied to characterize dual frames and bi-orthogonal Riesz bases of L2.Bi-inner product functionals generated by a pair of Bessel sequences of L2 functions are introduced. It is shown that these functionals are constant multiples of the inner products of L2 and l2, if and only if they are shift-invariant both in space (or time) and in phase. This result is then applied to characterize dual frames and bi-orthogonal Riesz bases of L2.

关 键 词:oscillatory integral operator MULTIPLIER SINGULARITY 

分 类 号:O174.41[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象