THE FORMULATION OF FIDELITY SCHEMES OF PHYSICAL CONSERVATION LAWS AND IMPROVEMENTS ON A TRADITIONAL SPECTRAL MODEL OF BAROCLINIC PRIMITIVE EQUATIONS FOR NUMERICAL PREDICTION  被引量:3

THE FORMULATION OF FIDELITY SCHEMES OF PHYSICAL CONSERVATION LAWS AND IMPROVEMENTS ON A TRADITIONAL SPECTRAL MODEL OF BAROCLINIC PRIMITIVE EQUATIONS FOR NUMERICAL PREDICTION

在线阅读下载全文

作  者:钟青 

机构地区:[1]LASG,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

出  处:《Acta meteorologica Sinica》1999年第2期226-248,共23页

基  金:The work is supported by the National Natural Science Foundation of China(49675267).

摘  要:In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discretized schemes given as special cases.These two theorems can provide new mathematical basis for solving basic formulation problems of more types of conservative time- discrete fidelity schemes,and even for formulating conservative temporal-spatial discrete fidelity schemes by combining existing instantly conserving space-discretized schemes.Besides.the two theorems can also solve two large categories of problems about linear and nonlinear computational instability. The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic primitive equations is currently used in many countries in the world for operational weather forecast and numerical simulations of general circulation.The present work,however,based on Theorem 2 formulated in this paper,develops and realizes a high-order total energy conserving semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of baroclinic primitive equations.Prior to this,such a basic formulation problem remains unsolved for long,whether in terms of theory or practice.The total energy conserving semi-implicit scheme formulated here is applicable to real data long-term numerical integration. The experiment of thirteen FGGE data 30-day numerical integration indicates that the new type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic deviation of energy and mass conserving of the traditional scheme.It should be particularly noted that,under the experiment conditions of the present work,the systematic errors induced by the violation of physical laws of conservation in the time-discretized process regarding the traditional scheme designs(called type Z errors for short)can contribute up to one-third of the total systematic root-mean-square(RMS)error at the end of seIn this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discretized schemes given as special cases.These two theorems can provide new mathematical basis for solving basic formulation problems of more types of conservative time- discrete fidelity schemes,and even for formulating conservative temporal-spatial discrete fidelity schemes by combining existing instantly conserving space-discretized schemes.Besides.the two theorems can also solve two large categories of problems about linear and nonlinear computational instability. The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic primitive equations is currently used in many countries in the world for operational weather forecast and numerical simulations of general circulation.The present work,however,based on Theorem 2 formulated in this paper,develops and realizes a high-order total energy conserving semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of baroclinic primitive equations.Prior to this,such a basic formulation problem remains unsolved for long,whether in terms of theory or practice.The total energy conserving semi-implicit scheme formulated here is applicable to real data long-term numerical integration. The experiment of thirteen FGGE data 30-day numerical integration indicates that the new type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic deviation of energy and mass conserving of the traditional scheme.It should be particularly noted that,under the experiment conditions of the present work,the systematic errors induced by the violation of physical laws of conservation in the time-discretized process regarding the traditional scheme designs(called type Z errors for short)can contribute up to one-third of the total systematic root-mean-square(RMS)error at the end of se

关 键 词:global spectral model for baroelinic primitive equations total energy conserving semi-implicit fidelity scheme type Z systematic errors physical conservation laws medium-range numerical prediction 

分 类 号:P456[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象