THE STABILITY AND CONVERGENCE OF COMPUTINGLONG-TIME BEHAVIOUR  

THE STABILITY AND CONVERGENCE OF COMPUTINGLONG-TIME BEHAVIOUR

在线阅读下载全文

作  者:HaI-jun Wu Rong-hua Li(Institute of Mathematics, Jilin University, Changchun 130023, China) 

出  处:《Journal of Computational Mathematics》1999年第4期397-418,共22页计算数学(英文)

摘  要:The object of this paper is to establish the relation between stability and convergence of the numerical methods for the evolution equation u(t) - Au - f(u) = g(t) on Banach space V, and to prove the long-time error estimates for the approximation solutions. At first, we give the definition of long-time stability, and then prove the fact that stability and compatibility imply the uniform convergence on the infinite time region. Thus, we establish a general frame in order to prove the long-time convergence. This frame includes finite element methods and finite difference methods of the evolution equations, especially the semilinear parabolic and hyperbolic partial differential equations. As applications of these results we prove the estimates obtained by Larsson [5] and Sanz-serna and Stuart [6].The object of this paper is to establish the relation between stability and convergence of the numerical methods for the evolution equation u(t) - Au - f(u) = g(t) on Banach space V, and to prove the long-time error estimates for the approximation solutions. At first, we give the definition of long-time stability, and then prove the fact that stability and compatibility imply the uniform convergence on the infinite time region. Thus, we establish a general frame in order to prove the long-time convergence. This frame includes finite element methods and finite difference methods of the evolution equations, especially the semilinear parabolic and hyperbolic partial differential equations. As applications of these results we prove the estimates obtained by Larsson [5] and Sanz-serna and Stuart [6].

关 键 词:STABILITY compatibility covergence reaction-diffusion equation long-time error estimates 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象