Accuracy of Lax-Wendroff scheme for discontinuous solutions of convection equations  

Accuracy of Lax-Wendroff scheme for discontinuous solutions of convection equations

在线阅读下载全文

作  者:DING LijuanDepartment of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, China 

出  处:《Chinese Science Bulletin》1997年第24期2047-2051,共5页

摘  要:IT is known from Brenner, Thomee and Wahlbin that the well-known second-order Lax-Wendroff scheme is stable in L^2, but unstable in L^p, p≠2. Generally speaking, if the initialdata is smooth enough and if a difference scheme, which is stable in L^p for some p, has orderof accuracy μ, then we can expect that the solution of the difference scheme converges to thesolution of the differential equation at the rate of order μ in L^p. But for discontinuous solu-tions, which are essential to hyperbolic equations, the above expectation is not true. Error es-timates for discontinuous solutions not only have theoretical meaning, but also practical value.

关 键 词:Lax-Wendroff scheme modlfled EQUATION DISCONTINUOUS solutions ERROR estimate. 

分 类 号:O151[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象