检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Earth East Normal University [2]Liaoning Normal Universityhis paper investigates the predator-prey system:x=k_1(x-ax)-k(x)y,y=(-k_3+βk(x)ywit.k(x)=k_2x, x≤x, k_2x, x>τ,where α, β, τ [3]k_1, k_2, k_3 are positive constants.The main results are as follows(i) In case k_3-βk_2τ≥0 system (1) has no limit cycle.(ii) In case k_3-βk_2τ<0, k_1+k_3-βk_2τ> and for O<α<<1, system (1) at least has two limitcycles.
出 处:《Acta Mathematicae Applicatae Sinica》1989年第1期30-32,共3页应用数学学报(英文版)
摘 要:This paper investigates the predator-prey system:x=k_1(x-ax)-k(x)y,y=(-k_3+βk(x)ywit.k(x)=k_2x, x≤x, k_2x, x>τ,where α, β, τ; k_1, k_2, k_3 are positive constants.The main results are as follows(i) In case k_3-βk_2τ≥0 system (1) has no limit cycle.(ii) In case k_3-βk_2τ<0, k_1+k_3-βk_2τ> and for O<α<<1, system (1) at least has two limitcycles.This paper investigates the predator-prey system:x=k_1(x-ax)-k(x)y,y=(-k_3+βk(x)ywit.k(x)=k_2x, x≤x, k_2x, x>τ,where α, β, τ; k_1, k_2, k_3 are positive constants.The main results are as follows(i) In case k_3-βk_2τ≥0 system (1) has no limit cycle.(ii) In case k_3-βk_2τ<0, k_1+k_3-βk_2τ> and for O<α<<1, system (1) at least has two limitcycles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151