检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]惠州学院网络中心,惠州516007 [2]华南理工大学软件学院,广州510006
出 处:《计算机工程》2009年第7期170-171,202,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60803052)
摘 要:针对以往粒子群优化算法多样性差且易局部收敛的不足,提出改进综合学习粒子群优化(CLPSO)算法的最小方差优先自适应变异策略,设计自适应变异综合粒子群优化(CLPSO-M)算法。多个标准测试问题的对比实验数据表明,CLPSO-M算法比CLPSO算法的全局搜索能力更强,求解效果更稳定。Classical Particle Swarm Optimization(PSO) algorithm has bad diversity and is easy to converge locally. This paper puts forward a smallest- variation-first mutation to design an improved CLPSO algorithm named as CLPSO-M algorithm, The experimental result of solving the benchmark problems indicates that CLPSO-M performs better and more steadily than CLPSO.
关 键 词:群体智能 粒子群优化算法 综合学习 最小方差优先 自适应变异
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249