The Bipolar Quantum Drift-diffusion Model  被引量:5

The Bipolar Quantum Drift-diffusion Model

在线阅读下载全文

作  者:Xiu Qing CHEN Li CHEN 

机构地区:[1]School of Sciences, Beijing University of Pos~s and Telecommunications, Beijing 100876, P. R. China [2]Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第4期617-638,共22页数学学报(英文版)

基  金:Supported by the Natural Science Foundation of China (No. 10571101, No. 10626030 and No. 10871112)

摘  要:A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassieal limit describes the relation between quantum and classical drift-diffusion models, Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassieal limit describes the relation between quantum and classical drift-diffusion models, Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.

关 键 词:quantum drift-diffusion fourth order parabolic system weak solution semiclassical limit exponential decay 

分 类 号:O413[理学—理论物理] TN6[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象