检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东农业大学基础部
出 处:《山东矿业学院学报》1998年第1期89-91,共3页Journal of Shandong University of Science and Technology(Natural Science)
摘 要:图G的一个(正常)路着色是一映射φ:V(G)→C,使得C中任一元素的原象的导出子图是路的不交并,使G有正常路着色所需要的C的最小基数|C|,称为G的路色数,用x(G;P∞)表示。J.Akiyama和Era[3]提出如下问题:是否存在平面图G使得x(G;P∞)=4?关于这一问题,已有人证明[3,5];对于任意平面图G,都有x(G;P∞)≤3。A proper path-coloring of a graph G is a mapping of V(G) onto the set C of colors such that the induced subgraph of the resource images of every eiement in C is a diojoint union of phths. The phth-chromatic number of a graph G, denoted by x(G;P∞), is the least cardinal number of C for which there exists a proper path-coloring of G. J.Akiyama and H.Era posed the following conjecture: if there exists a planar graph G such that x(G;P∞)=4? About this problem, someone has proved, that is for any planar graph G, x(G;P∞)≤3. In section two, we give a simpler new proof of the conjecture in the sense of path-chromatic number.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117