关于一个猜想的简单证明  

A Simple Proof of a Conjecture

在线阅读下载全文

作  者:苗莲英[1] 陈东灵 逄世友[1] 

机构地区:[1]山东农业大学基础部

出  处:《山东矿业学院学报》1998年第1期89-91,共3页Journal of Shandong University of Science and Technology(Natural Science)

摘  要:图G的一个(正常)路着色是一映射φ:V(G)→C,使得C中任一元素的原象的导出子图是路的不交并,使G有正常路着色所需要的C的最小基数|C|,称为G的路色数,用x(G;P∞)表示。J.Akiyama和Era[3]提出如下问题:是否存在平面图G使得x(G;P∞)=4?关于这一问题,已有人证明[3,5];对于任意平面图G,都有x(G;P∞)≤3。A proper path-coloring of a graph G is a mapping of V(G) onto the set C of colors such that the induced subgraph of the resource images of every eiement in C is a diojoint union of phths. The phth-chromatic number of a graph G, denoted by x(G;P∞), is the least cardinal number of C for which there exists a proper path-coloring of G. J.Akiyama and H.Era posed the following conjecture: if there exists a planar graph G such that x(G;P∞)=4? About this problem, someone has proved, that is for any planar graph G, x(G;P∞)≤3. In section two, we give a simpler new proof of the conjecture in the sense of path-chromatic number.

关 键 词:平面图 路色数 平面三角剖分图 猜想 证明 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象