承德县人工油松林林下草本植物种间关系研究  被引量:11

Interspecific Relations of Herbage Species under Artificial Pinus tabulaeformis Forests in Chengde County

在线阅读下载全文

作  者:张桂娟[1] 张金龙[2] 李淑贤[1] 于新友[3] 周国娜[1] 高宝嘉[1] 

机构地区:[1]河北农业大学,河北保定071000 [2]济南工程职业技术学院,济南250000 [3]中国人民解放军6455工厂,济南250000

出  处:《中国农学通报》2009年第7期109-113,共5页Chinese Agricultural Science Bulletin

基  金:河北省重点林业科研项目"环境条件胁迫下油松的种群分化与分子适应机制"(C2008000231)。

摘  要:为研究林下草本层植物种间联结性,以承德县人工油松林林下草本植物为研究对象,采用χ2检验、Pearson相关分析和Spearman秩相关分析检验了35个物种595个种对间的关联性,研究结果表明:在表征种间关联方面,Spearman秩相关分析较χ2检验、Pearson相关分析灵敏度高;3种检验方法的一致结果为:负相关的种对数远多于正相关,而极显著和显著相关的种对数所占比例较低,大多数种间关系松散,独立性相对较强,群落还处于演替之中;种对间的正相关是由于它们的生态适应性相近,是生态位重叠的表现;而种对间的负相关正是生态位分离的结果。In order to study the interspecific relations of herbage species under forests, the herbage species under artificial Pinus tabulaeformis forests in Chengde County were regarded as the main study object. The interspecific relations of 595 pairs of species were analyzed by x^2-test, Pearson' s correlation coefficient and Spearman' s rank correlation coefficient. The results indicated that. In the aspect of showing relations between species, Spearman' s rank correlation coefficient test was more sensitive than x^2-test and Pearson' s correlation coefficient test. Three sorts of test methods all show that: the number of pairs of species having negative correlation was larger than that of positive correlation; the proportion of significant and very significant pairs of species was small; most species were independently distributed and not closely related with each other; and the communities were in the phase of succession. The positive correlations between species-pairs were the indication of niche overlap and owed to the similar biological adaptability; The negative correlations between species-pairs were the results of niche separation.

关 键 词:人工油松 草本 χ~2检验 Pearson相关分析 Spearman秩相关分析 种间关联 

分 类 号:Q948.122.1[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象