检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学信息科学与技术学院,江苏南京210016
出 处:《信号处理》2009年第4期665-668,共4页Journal of Signal Processing
摘 要:阈值分割是图像分割中简单有效的方法,应用极为广泛。基于熵的阈值选取方法是其中一类颇受关注的方法,二维Tsallis-Havrda-Charvat熵法分割效果好,但因计算量庞大,难以实用。本文提出了二维Tsallis-Havrda-Charvat熵的阈值分割两种不同的快速递推算法,都可将计算复杂性由O(L^4)减少为O(L^2)。文中给出了二维Tsallis-Havrda-Charvat熵两种快速递推算法的分割结果及运行时间,并与原始算法进行了比较。实验结果表明,这两种递推算法都可以大幅度地提高运算速度,运行时间几乎不到原始算法的0.1%。Thresholding is a simple and efficient technique for image segmentation in digital image processing. It finds wide applications in various areas. The thresholding algorithm based on entropy is one of the most famous methods. The two-dimensional Tsal- lis-Havrda-Charvat entropic thresholding algorithm has a good performance, but due to its large computation, it is hard to be used in re- ality. In this paper, two fast recurring two-dimensional Tsallis-Havrda-Charvat entropic thresholding algorithms, whose computational complexities are both only O(L^2), are proposed, while the computational complexity of the original algorithm is O(L^4 ). Using these two recurring algorithms, the results and processing time of the two-dimensional Tsallis-Havrda-Charvat entropic thresholding algorithm are given. Experimental results show that these two recurring algorithms can both greatly reduce the processing time of images, which is less than 0.1% of the original algorithm.
关 键 词:图像分割 阈值选取 二维Tsallis-Havrda-Charvat熵 递推算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90