扩展有限元方法计算多夹杂问题时圆形夹杂与四边形单元的几何关系  被引量:2

Geometrical relation between circular inclusion and quadrangular element for solving multi-inclusions problem by XFEM

在线阅读下载全文

作  者:姚再兴[1,2] 李世海[1] 刘晓宇[1] 

机构地区:[1]中国科学院力学研究所,北京100190 [2]辽宁工程技术大学力学与工程学院,阜新123000

出  处:《计算力学学报》2009年第2期180-187,共8页Chinese Journal of Computational Mechanics

基  金:国家“973”(2002CB412703);国家自然科学基金重点(504334020);国家自然科学基金(50504009,10472121);国家自然科学基金面上基金(50374042)资助项目

摘  要:用扩展有限元法XFEM(Extended Finite Element Method)解决夹杂问题时,夹杂与基质的界面把单元分成若干部分。求单元刚度矩阵时,需要分别在这各个部分求积分。找到便于程序编制的描述各积分区域几何形状的方法是亟待解决的问题。本文把各积分区域的形成过程看成是圆对四边形的多次切割。考虑切剩区域与圆的关系时,把不完整的边仍看作完整的边,把切剩区域看成是四边形或是切去一两条边的四边形。采用排列组合的方法,把它们与圆的所有位置关系列了出来。When solving inclusion problem by the Extended Finite Element Method (XFEM), an element is split into many regions by the interface between inclusions and matrix. In order to calculate element stiffness matrix, integral in these regions is necessary. The urgent problem to be solved is to find a convenient method to describe integral regions for programming. The process of forming integral regions is taken as circles repeatedly splitting a quadrangle. Geometrical relation between remained region and circles is analyzed. In the process, broken sides are substituted by original sides, and remained region is substituted by quadrangle that discards no or some sides. All possible geometrical relations between circle and remained regions are listed through permutation and combination.

关 键 词:扩展有限元 夹杂 切剩区域 四边形单元 

分 类 号:O242.21[理学—计算数学] O341[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象