检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵毅强[1]
机构地区:[1]北京市建筑设计研究院
出 处:《建筑结构学报》1990年第6期58-68,共11页Journal of Building Structures
摘 要:本文推导出了任意截面形状的楔形杆的单元刚度矩阵和单元几何刚度矩阵。文中截面面积和惯性矩沿杆轴的变化性质由杆件的截面尺寸精确表达,屈曲位移模式近似地用已知杆端位移产生的弹性变位曲线描述,单元刚度矩阵和单元几何刚度矩阵采用结构力学和能量原理相结合的方法推导,形式简单,精度良好,可以方便地用于实际工程。文中附有计算实例。In this paper, the element stiffness and consistent geometric' stiffness matrices for linearly tapered members with arbitrary cross-section have been derived in explicit forms. In which, variations of area and moment of inertia of cross-sections along the axis of the member are precisely expressed in terms of its cross-sectional dimensions. Elastic deformation curves due to the known displacements of the member ends are used to depict approximately the buckling displacement model, while element stiffness and consistent geometric stiffness matrices are developed by a method combining structural mechanics with energy principle. These matrices, which are simple and accurate, can be conveniently used in engineering practice. Numerical examples of some structures with tapered members are given at the end of the paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117