检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2009年第4期547-550,556,共5页Control and Decision
基 金:国家973计划项目(2004CB720703)
摘 要:k-近邻分类是一种流行且成功的非参数分类方法,但其分类性能由于离群点的存在而受到损害.为克服离群点对分类性能的不利影响,提出了一个k-近邻分类的变形和一个基于局部均值向量与类均值向量的近邻分类方法.该方法利用了未分类样本在每个训练类中k个近邻的局部均值的信息和整体均值的知识,不仅能够克服离群点对分类性能的影响,而且取得了比传统的k-近邻分类一致好的分类性能.The k-nearest neighbour classification is a very popular and successful nonparametric classification method, but its classification performance usually suffers from the existing outliers. To overcome the adverse effect of the existing outliers on classification performance, a variant of the k-nearest neighbour classification and a nearest neighbour classification method based on the local mean and class mean are proposed. The information of the local mean of the k nearest neighbours of the unclassified sample in each class and the knowledge of the ensemble mean are taken into account in the classification method. The proposed classification method overcomes the influence of the existing outliers and achieves a uniformly good classification performance compared with the traditional k-nearest neighbour classification.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177