检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Journal of Chemical Engineering》2009年第2期226-231,共6页中国化学工程学报(英文版)
基 金:Supported by the National High Technology Research and Development Program of China (2007AA40702 and 2007AA04Z191)
摘 要:Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance constrains. But the efficiency will decrease significantly when this method is applled in a large-scale problem because there are too many binary variables involved. In this article, an improved method is proposed in order to gen- erate gross error candidates with reliability factors before data rectification. Candidates are used in the MILP objec- tive function to improve the efficiency and accuracy by reducing the number of binary variables and giving accurate weights for suspected gross errors candidates. Performance of this improved method is compared and discussed by applying the algorithm in a widely used industrial example.Mixed integer linear programming(MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material,energy,and other balance constrains.But the efficiency will decrease significantly when this method is applied in a large-scale problem because there are too many binary variables involved.In this article,an improved method is proposed in order to generate gross error candidates with reliability factors before data rectification.Candidates are used in the MILP objective function to improve the efficiency and accuracy by reducing the number of binary variables and giving accurate weights for suspected gross errors candidates.Performance of this improved method is compared and discussed by applying the algorithm in a widely used industrial example.
关 键 词:data rectification gross error detection graphic theory Bayesian method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147