机构地区:[1]Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology [2]School of Chemical and Environmental Engineering , Hubei University of Technology
出 处:《Journal of Wuhan University of Technology(Materials Science)》2009年第2期264-268,共5页武汉理工大学学报(材料科学英文版)
基 金:Funded by the Scientific Research Foundation for the Returned OverseasChinese Scholars
摘 要:Electroluminescence (EL) of organic light emitting diodes (OLEDs) with a configtration of ITO/TPD/BC/Alq3/Mg-Ag, where TPD, BC and Alq3 represent N, N'-diphenyl-N, N'-bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, bathocuproine and tris(8-quinolinolato)aluminum(III), respectively, was investigated in comparison with the photoluminescence (PL) of the individual organic layers. The EL spectra of the OLEDs were found to be much different from the PL spectra of the component multiple layer structure. Each organic layer made its contribution to the light emitted from the OLEDs. Their individual contributions were related to the field distribution across the device, which was in turn dependent on the thickness of each organic layer and the applied bias voltages. Consequently, the EL spectra of the OLEDs were observed to vary as the relative thickness of any organic layer was changed and as the bias voltage was alternated. The variation of the EL spectra of the device resulted in the easiness of achieving variable colors emitted by the device, from blue to green, and then to near white light.Electroluminescence (EL) of organic light emitting diodes (OLEDs) with a configtration of ITO/TPD/BC/Alq3/Mg-Ag, where TPD, BC and Alq3 represent N, N'-diphenyl-N, N'-bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, bathocuproine and tris(8-quinolinolato)aluminum(III), respectively, was investigated in comparison with the photoluminescence (PL) of the individual organic layers. The EL spectra of the OLEDs were found to be much different from the PL spectra of the component multiple layer structure. Each organic layer made its contribution to the light emitted from the OLEDs. Their individual contributions were related to the field distribution across the device, which was in turn dependent on the thickness of each organic layer and the applied bias voltages. Consequently, the EL spectra of the OLEDs were observed to vary as the relative thickness of any organic layer was changed and as the bias voltage was alternated. The variation of the EL spectra of the device resulted in the easiness of achieving variable colors emitted by the device, from blue to green, and then to near white light.
关 键 词:BATHOCUPROINE LUMINESCENCE multilayer structure emission wavelength shift
分 类 号:TN312.8[电子电信—物理电子学] TN383.1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...