Hybrid Verification of A Deepwater Cell-Truss Spar  被引量:3

Hybrid Verification of A Deepwater Cell-Truss Spar

在线阅读下载全文

作  者:苏一华 杨建民 肖龙飞 

机构地区:[1]State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University

出  处:《China Ocean Engineering》2009年第1期1-14,共14页中国海洋工程(英文版)

基  金:supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09A107)

摘  要:Hybrid model testing technique is widely used in verification of a deepwater floating structure and its mooring system, but the design of the truncated mooring systems which can reproduce both static and dynamic response same as the full-depth mooring system is still a big challenge, especially for the mooring systems with large truncation. A Cell-Truss Spar operated in 1500 m water depth is verified in a wave basin with 4 m water depth. A large truncation factor arises even though a small model scale 1 : 100 is adopted. Computer program modules for analyzing the static and frequency domain dynamic response of mooting line are combined with multi-objective genetic algorithm NSGA-II to optimize the truncated mooring system. Considering the asyrmnetry of layout of mooring lines, two different truncated mooring systems are respectively designed for both directions in which the restoring forces of the mooring system are quite different. Not only the static characteristics of the mooring systems are calibrated, but also the dynamic responses of the single truncated mooring line are evaluated through time domain numerical simulation and model tests. The model test results of 100-year storm in the GOM are reconstructed and extrapolated to a full depth. It is found that the experimental and numerical resuits of Spar wave frequency motion agree well, and the dynamic responses of the full-depth mooring lines are better reproduced, but the low frequency surge motion is overestimated due to the smaller mooring-induced damping. It is a feasible method adopting different tnmcated mooring systems for different directions in which the restoring force characteristics are quite different and cannot be simulated by one truncated mooring system. Hybrid verification of a deepwater platform in wave basin with shallow water depth is still feasible if the truncated mooring systems are properly designed, and numerical extrapolation is necessary.Hybrid model testing technique is widely used in verification of a deepwater floating structure and its mooring system, but the design of the truncated mooring systems which can reproduce both static and dynamic response same as the full-depth mooring system is still a big challenge, especially for the mooring systems with large truncation. A Cell-Truss Spar operated in 1500 m water depth is verified in a wave basin with 4 m water depth. A large truncation factor arises even though a small model scale 1 : 100 is adopted. Computer program modules for analyzing the static and frequency domain dynamic response of mooting line are combined with multi-objective genetic algorithm NSGA-II to optimize the truncated mooring system. Considering the asyrmnetry of layout of mooring lines, two different truncated mooring systems are respectively designed for both directions in which the restoring forces of the mooring system are quite different. Not only the static characteristics of the mooring systems are calibrated, but also the dynamic responses of the single truncated mooring line are evaluated through time domain numerical simulation and model tests. The model test results of 100-year storm in the GOM are reconstructed and extrapolated to a full depth. It is found that the experimental and numerical resuits of Spar wave frequency motion agree well, and the dynamic responses of the full-depth mooring lines are better reproduced, but the low frequency surge motion is overestimated due to the smaller mooring-induced damping. It is a feasible method adopting different tnmcated mooring systems for different directions in which the restoring force characteristics are quite different and cannot be simulated by one truncated mooring system. Hybrid verification of a deepwater platform in wave basin with shallow water depth is still feasible if the truncated mooring systems are properly designed, and numerical extrapolation is necessary.

关 键 词:hybrid model testing technique DEEPWATER Spar mooring system TRUNCATION 

分 类 号:U653.2[交通运输工程—港口、海岸及近海工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象