An Efficient Hydrodynamic Model for Surface Waves  被引量:1

An Efficient Hydrodynamic Model for Surface Waves

在线阅读下载全文

作  者:王昆 金生 刘刚 

机构地区:[1]State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology

出  处:《China Ocean Engineering》2009年第1期145-156,共12页中国海洋工程(英文版)

摘  要:In the present study, a semi-implicit finite difference model for non-hydrostatic, free-surface flows is analyzed and discussed. The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general, irregular domain of arbitrary scale. At outflow, a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection. The equations are solved with the fractional step method where the hydrostatic pressure component is determined first, while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The advection and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach. The resulting model is computationally efficient and unrestricted to the CFL condition. The developed model is verified against analytical solutions and experimental data, with excellent agreement.In the present study, a semi-implicit finite difference model for non-hydrostatic, free-surface flows is analyzed and discussed. The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general, irregular domain of arbitrary scale. At outflow, a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection. The equations are solved with the fractional step method where the hydrostatic pressure component is determined first, while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The advection and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach. The resulting model is computationally efficient and unrestricted to the CFL condition. The developed model is verified against analytical solutions and experimental data, with excellent agreement.

关 键 词:Reynolds-averaged Navier-Stokes equations NON-HYDROSTATIC sponge layer SEMI-IMPLICIT serrd-Lagrangian 

分 类 号:TV131.2[水利工程—水力学及河流动力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象