检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹浩[1,2] 潘涛[1,2] 田佩玲[3] 韩筠[4] 韦相才[3] 张清健[3] 方俊宇[3] 钟泉[4] 冯华[4]
机构地区:[1]"重大工程灾害与控制"教育部重点实验室(暨南大学) [2]暨南大学光电工程系 [3]广东省计划生育科学技术研究所,广州市越秀区梅东路17号510600 [4]暨南大学数学系
出 处:《光谱实验室》2009年第2期431-436,共6页Chinese Journal of Spectroscopy Laboratory
基 金:国家自然科学基金(10771087);广东省科技计划粤港关键领域重点突破项目(2007A020905001);广东省科技计划项目(2007B030501008;2007B020714001);广州市科技攻关项目(2007Z3-E0281);教育部留学归国人员科技启动基金(2005-383)1)资助
摘 要:利用傅里叶变换红外光谱(FTIR)和衰减全反射(ATR)技术,建立了人体血液血红蛋白(HGB)的快速定量分析方法。采集人体全血样品8个,用常规化学方法测定血红蛋白浓度作为光谱校正模型的参考化学值。每个样品用蒸馏水溶血,分别配制成2倍、3倍、4倍、5倍、6倍稀释的溶血液样品,和全血样品一起共得到6组48个样品用于光谱测定。基于11点Savitzky-Golay平滑的二阶导数光谱,采用MLR分析和交叉检验对每组样品分别建立定量模型。每组分别采用全谱(4000—600cm-1)、指纹领域(1800—800cm-1)建立MLR模型,并建立每个波数的一元线性回归模型,从中遴选效果最好的单点模型。结果表明,每组样品的最优单点模型都有良好的预测效果。直接测定的全血样品组的最优单点模型的采用波数、交叉检验均方误差(RMSECV)、相对交叉检验均方误差(RRMSECV)、预测相关系数(Rp)分别为1759cm-1、4.9g/L、3.6%、0.825。The rapid quantitative analysis method of the human blood hemoglobin (HGB) was developed by a Fourier transform infrared (FTIR) spectrometer and attenuated total reflection (ATR) techniques. Eight samples of the human blood were collected,hemoglobin concentration was measured by the conventional chemical method,and it was as the reference chemical value of the calibration model for the spectrum. Each sample with distilled water hemolysis,were configured to 2 times,3 times,4 times,5 times,6 times dilute hemolytic solution sample respectively,and the whole blood samples had been together a total of 6 groups of 48 samples for spectrometry. Based on the second derivatives of the spectra were calculated by using 11 points Savitzky-Goray smoothing,the MLR analysis and the cross-validation,the quantitative models of each sample group were established respectively. To each group the MLR model was established by using the whole region (4000—600cm^-1) and the fingerprint region (1800—800cm^-1) res...更多pectively.The linear regression model of the each wavenumber was established,and the best single-point model was selected from above models. The results showed that the best single-point models of each sample group had a good prediction effect. To the best single-point model for the whole blood sample group which by direct determination,the adopting wavenumber,the root mean square error cross validation (RMSECV),the relative root mean square error cross validation (RRMSECV),the prediction correlation coefficient (Rp) were 1759cm^-1,4.9g/L,3.6%,0.825,respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38