利用语义词典Web挖掘语言模型的无指导译文消歧  被引量:7

Unsupervised Translation Disambiguation by Using Semantic Dictionary and Mining Language Model from Web

在线阅读下载全文

作  者:刘鹏远[1] 赵铁军[1] 

机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001

出  处:《软件学报》2009年第5期1292-1300,共9页Journal of Software

基  金:国家自然科学基金No.60435020;国家高技术研究发展计划(863)Nos.2006AA01Z150;2006AA010108~~

摘  要:为了解决困扰词义及译文消歧的数据稀疏及知识获取问题,提出一种基于Web利用n-gram统计语言模型进行消歧的方法.在提出词汇语义与其n-gram语言模型存在对应关系假设的基础上,首先利用Hownet建立中文歧义词的英文译文与知网DEF的对应关系并得到该DEF下的词汇集合,然后通过搜索引擎在Web上搜索,并以此计算不同DEF中词汇n-gram出现的概率,然后进行消歧决策.在国际语义评测SemEval-2007中的Multilingual Chinese English Lexical Sample Task测试集上的测试表明,该方法的Pmar值为55.9%,比其上该任务参评最好的无指导系统性能高出12.8%.In order to solve the problem of data sparseness and knowledge acquisition in translation disambiguation and WSD (word sense disambiguation), this paper introduces an unsupervised method, based on the n-gram language model and web mining. It is supposed that there exists a latent relationship between the word sense and n-gram language model. Based on this assumption, the mapping between the English translation of Chinese word and the DEF of Hownet is established and the word set is acquired. Then the probabilities of n-gram in the words set are calculated based on the query results of a searching engine. The disambiguation is performed via these probabilities. This method is evaluated on a gold standard Multilingual Chinese English Lexical Sample Task dataset. Experimental results show that the model gets the state-of-the-art results (Pmar=55.9%) and outperforms 12.8% on the best system in SemEval-2007.

关 键 词:词义消歧 无指导译文消歧 语言模型 WEB挖掘 知识获取 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象