检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《软件学报》2009年第5期1292-1300,共9页Journal of Software
基 金:国家自然科学基金No.60435020;国家高技术研究发展计划(863)Nos.2006AA01Z150;2006AA010108~~
摘 要:为了解决困扰词义及译文消歧的数据稀疏及知识获取问题,提出一种基于Web利用n-gram统计语言模型进行消歧的方法.在提出词汇语义与其n-gram语言模型存在对应关系假设的基础上,首先利用Hownet建立中文歧义词的英文译文与知网DEF的对应关系并得到该DEF下的词汇集合,然后通过搜索引擎在Web上搜索,并以此计算不同DEF中词汇n-gram出现的概率,然后进行消歧决策.在国际语义评测SemEval-2007中的Multilingual Chinese English Lexical Sample Task测试集上的测试表明,该方法的Pmar值为55.9%,比其上该任务参评最好的无指导系统性能高出12.8%.In order to solve the problem of data sparseness and knowledge acquisition in translation disambiguation and WSD (word sense disambiguation), this paper introduces an unsupervised method, based on the n-gram language model and web mining. It is supposed that there exists a latent relationship between the word sense and n-gram language model. Based on this assumption, the mapping between the English translation of Chinese word and the DEF of Hownet is established and the word set is acquired. Then the probabilities of n-gram in the words set are calculated based on the query results of a searching engine. The disambiguation is performed via these probabilities. This method is evaluated on a gold standard Multilingual Chinese English Lexical Sample Task dataset. Experimental results show that the model gets the state-of-the-art results (Pmar=55.9%) and outperforms 12.8% on the best system in SemEval-2007.
关 键 词:词义消歧 无指导译文消歧 语言模型 WEB挖掘 知识获取
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249