检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:芮挺[1] 周游[2] Qi Tian 方虎生[1] 戎晓力[1]
机构地区:[1]解放军理工大学工程兵工程学院,南京210007 [2]江苏经贸职业技术学院会计系,南京210007 [3]Deptartment of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249
出 处:《模式识别与人工智能》2009年第2期288-292,共5页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目资助(No.50608069)
摘 要:小样本条件下,Fisher准则中类内散布矩阵一般是奇异的,无法直接求解.本文提出利用粒子群优化理论,在无需求类内散布矩阵逆的情况下求解Fisher准则下小样本最佳鉴别变换的方法.讨论了通过粒子群优化算法的位置——速度搜索模型获取最佳鉴别投影向量的方法和步骤.实验对比类内散布矩阵非奇异时,采用计算特征向量方法和本文方法的差异.分析验证小样本条件下类内散布矩阵奇异时,通过本文方法进行最佳鉴别变换的分类效果.实验证实本文算法的有效性.The within-class scatter matrix Fisher criterion is singular under small samples. Therefore, it can not be solved directly. A method based on PSO is proposed to get optimal discriminant transform under small samples without calculating inverse of the within-class scatter matrix. The methods and steps are discussed to get optimal discriminant projection vector by velocity-position search model of particle swarm optimization. The eigenvectors method and the proposed method are compared, when within-class scatter matrix is non-singular. Experimental results on both small and large samples demonstrate the accuracy of the proposed method.
关 键 词:模式识别 FISHER准则 最佳鉴别变换 粒子群优化(PSO)
分 类 号:TP391.43[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249