检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:皇才进[1] 刘贤[1] 杨增玲[1] 韩鲁佳[1]
出 处:《光谱学与光谱分析》2009年第5期1264-1267,共4页Spectroscopy and Spectral Analysis
基 金:国家"十一五"科技支撑计划项目(2006BAD12B04;2006BAD07A14)资助
摘 要:从全国24个省(市)收集到222个秸秆样品,包括172个稻秸样品和50个麦秸样品。采用近红外光谱技术,结合主成分回归、偏最小二乘回归和改进的偏最小二乘回归建立了秸秆热值的定量分析校正模型。近红外光谱模型的建立与优化过程中使用了不同的散射校正方法和光谱导数处理来帮助改善模型精度。对得到的54个模型采用统计学的方法分析外部验证的结果,通过比较外部验证的系统偏差(Bias)和Bias校正的预测标准差(SEP(C)),考察了不同光谱预处理和回归方法对秸秆热值的近红外模型预测性能的影响。结果表明:近红外光谱技术能够快速、准确地分析秸秆的热值,模型的SEP(C)在134~178J.g-1之间;对外部验证结果的统计分析,能够有效地选择较好的建模方法,确定较优模型。Two hundred and twenty-two straw samples, consisting of 170 rice straw samples and 50 wheat straw samples, were collected from 24 provinces of China. Near infrared spectroscopy (NIRS)was applied to build quantitative models for calorific value of straw combining the use of principal component regression (PCR), partial least square regression (PLS)and modified partial least square regression (MPLS). Different scatter correction methods and derivative treatments were adopted to help improve the accuracy of NIRS models. A total of 54 NIRS models were obtained and independent validations were conducted using the same validation set of samples. A statistical comparison of independent validation results was then introduced to evaluate whether the models perform significantly. Bias and bias corrected standard error of prediction (SEP(C)), which are the mean and the standard deviation of the prediction residuals respectively, were compared by the proposed statistical procedures. It was concluded that near infrared spectroscopy was able to predict the calorific value of straw samples rapidly and accurately, with resuiting SEP(C)s between 134 and 178 J · g^-1 ; statistical comparison of biases and SEP(C)s was a reasonable and efficient way to compare spectral pre-processing methods, and select NIRS models predicting calorific value of straw.
分 类 号:S216.2[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15