检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学信息工程学院,北京100083 [2]河北工程大学计算中心,河北邯郸056038 [3]邯郸职业技术学院信息工程系,河北邯郸056002
出 处:《计算机应用与软件》2009年第5期55-56,共2页Computer Applications and Software
基 金:国家自然科学基金项目(60573088)
摘 要:目前的构件软件复杂性度量模型未考虑构件之间不同依赖关系和软件构件内部复杂性两个重要因素,度量结果不够完整、准确。针对该问题,通过将软件体系结构抽象为加权的有向图,获得构件之间的依赖矩阵和影响矩阵,进而获取复杂性的度量公式。从度量公式分析和最后的示例可以得出,该度量模型可以更加真实、准确地反映构件之间不同的依赖关系和构件内部复杂性对软件复杂性的影响,而且具有简单、易于实现等特点。Because current metric model for component-based software complexity doesn' t consider two key factors which are various types of dependence relations among components and intra-component complexity of the software, metric results aren' t accurate and integrated. For resolving this problem, the weighted directed acyclic graph (DAG) is abstracted from software architecture for deriving dependence-matrix and influence-matrix and further building the measuring formula for software complexity. The measuring formula analysis and the end example show that the metric model can reflect more objectively and accurately the relationship of software complexity with various types of dependence and the impact of intra-eomponent complexity on software complexity, and has the features of simple and easy to realize.
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论] TP311.52[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28