基于树形结构编码单亲遗传算法的配电网优化规划  被引量:25

Distribution Network Optimal Planning Based on Tree Structure Encoding Partheno-Genetic Algorithm

在线阅读下载全文

作  者:章文俊[1] 程浩忠[1] 王一[1] 欧阳武[1] 

机构地区:[1]上海交通大学电子信息与电气工程学院,上海200240

出  处:《电工技术学报》2009年第5期154-160,共7页Transactions of China Electrotechnical Society

基  金:上海市重点科技攻关计划(041612012);高等学校优秀青年教师教学科研奖励计划资助项目

摘  要:在给出二叉树结构编码遗传算法在收敛性方面的结论可以推广到树形结构编码遗传算法中去的理由后,提出树形结构编码单亲遗传算法及移位、重分配等结构编码遗传操作算子,并将其应用于求解配电网规划问题。结合Prim算法产生初始种群,获得比完全随机产生的配电网络更优的初始方案。充分利用树形结构基因编码优点,优化过程中无需解码;充分利用单亲遗传算法的优点,优化过程中配电网络始终自然呈辐射状,无需辐射性及连通性检验。讨论了馈线线径确定、交叉点处理以及进行扩展规划等的方法。通过算例验证了该方法的快速性和有效性。并在结论部分对树形结构编码单亲遗传算法进行了完善,提出了该算法的变异算子。A tree structure encoding partheno-genetic algorithm for distribution networks optimal planning is presented, and two new genetic operators such as shift operator and redistribution operator for tree structure encoding partheno-genetic algorithm are proposed in this paper, after the reason that the convergence of bintree structure encoding genetic algorithm can be generalized to tree structure encoding genetic algorithm has been given. Prim algorithm is employed to produce preliminary radial networks, which are better than entirely random schemes. The advantages of partheno-genetic algorithm are fully utilized in distribution networks optimal planning. All schemes in the solving process are always naturally being radial pattern, and no need for inspection of connectivity and being radial in connection of the networks. The determination of wire diameter, the treatment of street cross points and the method of expansion planning for distribution networks is discussed. The examples of distribution network planning show that the method is feasible and efficient. Finally, in the conclusion part, mutation operator has been proposed to perfect the tree structure encoding partheno-genetic algorithm.

关 键 词:配电网络规划 辐射网 单亲遗传算法 PRIM算法 树形结构编码 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象