Isolation and Expression Profile Analysis of Genes Relevant to Chilling Stress During Seed Imbibition in Soybean [Glycine max (L.) Meer.]  被引量:1

Isolation and Expression Profile Analysis of Genes Relevant to Chilling Stress During Seed Imbibition in Soybean [Glycine max (L.) Meer.]

在线阅读下载全文

作  者:CHENG Li-bao LI Shu-yan HE Guang-yuan 

机构地区:[1]China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory/Key Laboratory of Molecular Biophysics, Ministry of Education/College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China [2]Life Science and Technique College, Xiaogan University, Xiaogan 432000, P.R.China

出  处:《Agricultural Sciences in China》2009年第5期521-528,共8页中国农业科学(英文版)

基  金:supported by the National973 Program of China (2002CB111302)

摘  要:Germination of soybean seed is always arrested by chilling imbibitional stress, and this phenomenon is widespread in the plant seed kingdom, but has not been studied at molecular level. In this experiment, cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was applied to isolate genes relevant to chilling stress (4℃) during soybean seed imbibition. Eight genes were found to be up-regulated and two were down-regulated during chilling stress respectively. Four up-regulated genes were selected to analyze the expression profiles during imbibition under chilling condition. It was demonstrated that the four genes were induced significantly by 4℃ for 24 h, and decreased when the temperature was shifted from 4 to 22℃. GMCHl, a highly chilling stress-induced gene which responded to abscisic acid (ABA), polyethylene glycol (PEG) and NaCl, showed great stress-resistance according to published reports. Cos78 was identified to be induced by PEG. However, Cos66 and Cos36 transcription showed no change to ABA, PEG, and NaCl. From the characteristic of genes isolated from the embryonic axis, we concluded that soybean seeds have different pathways to adapt to various biotic and abiotic stresses by regulating many signal transduction pathways.Germination of soybean seed is always arrested by chilling imbibitional stress, and this phenomenon is widespread in the plant seed kingdom, but has not been studied at molecular level. In this experiment, cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was applied to isolate genes relevant to chilling stress (4℃) during soybean seed imbibition. Eight genes were found to be up-regulated and two were down-regulated during chilling stress respectively. Four up-regulated genes were selected to analyze the expression profiles during imbibition under chilling condition. It was demonstrated that the four genes were induced significantly by 4℃ for 24 h, and decreased when the temperature was shifted from 4 to 22℃. GMCHl, a highly chilling stress-induced gene which responded to abscisic acid (ABA), polyethylene glycol (PEG) and NaCl, showed great stress-resistance according to published reports. Cos78 was identified to be induced by PEG. However, Cos66 and Cos36 transcription showed no change to ABA, PEG, and NaCl. From the characteristic of genes isolated from the embryonic axis, we concluded that soybean seeds have different pathways to adapt to various biotic and abiotic stresses by regulating many signal transduction pathways.

关 键 词:SOYBEAN GERMINATION IMBIBITION stress CDNA-AFLP 

分 类 号:S565.1[农业科学—作物学] Q943.2[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象