基于BP网络的齿轮弯曲疲劳强度极限的确定  被引量:2

Establish of Gear Bending Fatigue Strength Limit based on BP Network

在线阅读下载全文

作  者:杨小安[1] 张伟社[1] 高勇[1] 成建联[1] 

机构地区:[1]长安大学理学院,陕西西安710064

出  处:《机械传动》2009年第3期94-96,共3页Journal of Mechanical Transmission

基  金:陕西省基金项目(2007611)资助

摘  要:齿轮强度设计时,其弯曲疲劳强度极限值一般由图表查得,由于图表繁多,给齿轮传动设计的CAD化带来了很大的不便。针对齿轮弯曲疲劳强度极限的影响因素(齿轮材料、齿面热处理硬度、材料及热处理品质),以及这些影响因素与齿轮弯曲疲劳强度极限之间非线性特性,提出了应用4层BP神经网络模型确定齿轮弯曲疲劳强度极限的方法。依据弯曲疲劳强度极限线图的两个特殊点建立了解析表达式,用其求出的值作为BP网络训练样本。训练好的BP网络模型可直接用于工程设计中齿轮弯曲疲劳强度极限值的确定,实例印证了其误差不超过5%。The bending fatigue limits is generally given from a chart when designing the strength of the gear,which has brought great inconvenience to driving the design of CAD with many charts.Considering the impact factors of the bending fatigue limit(gear materials,hardness of heat treatment,materials and heat treatment quality) and the nonlinear features between these impact factors and gear bending fatigue limit,A method of using four-storey BP neural network model to determine the gear bending fatigue limit is put forward to.An analytical expression is established based on two special points of bending strength limit,using its value as BP network training samples.The trained BP network model can be directly used for establishing the limits of gear bending fatigue strength in engineering design,some cases confirmed the error of no more than 5 percent.

关 键 词:齿轮传动 BP网络 疲劳强度极限 

分 类 号:TH132.41[机械工程—机械制造及自动化] TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象