检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
出 处:《计算机工程与应用》2009年第17期139-141,243,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.60773100);教育部科学技术研究重点项目(No.205014);河北省教育厅科研计划项目(No.2006143)~~
摘 要:提出了一种基于主分量分析和属性距离和的孤立点检测算法。该方法首先通过主分量分析方法从众多属性中提取出满足累计贡献率的主分量,同时利用PCA变换矩阵把原始数据集转换到由主分量组成的新的特征空间上,之后对转换后的数据集用属性距离和的方法对孤立点进行检测。实验结果证明了基于主分量分析和属性距离和的孤立点检测算法的有效性。An outlier detection algorithm based on principal component analysis and the sum of attributes distance is proposed. The algorithm firstly extracts the principal components from many attributes satisfying accumulative contribution rate.Simultaneously,by the PCA matrix original dataset is transformed to a new feature space composed of principal component.Then outliers are detected using the approach of the sum of attributes distance in the transformed datasets.The results of the experiment show that the outlier detection algorithm based on principal component analysis and the sum of attributes distance is effective.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222