检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苗同臣[1] 范翠英[1,2] 赵炎翡[1] 赵明皞[1]
机构地区:[1]郑州大学工程力学系,郑州450001 [2]兰州大学土木工程与力学学院,兰州730000
出 处:《机械强度》2009年第3期470-474,共5页Journal of Mechanical Strength
基 金:国家自然科学基金(10572131);河南省高校新世纪优秀人才支持计划(HANCET)资助~~
摘 要:根据广义Crouch基本解和广义不连续位移边界元方法,研究电磁固体中的裂纹在非均匀载荷下的广义应力强度因子和裂纹腔内的电位移和磁感应强度,以及电磁均不可穿透和电磁均可穿透边界条件对解的影响。以线性分布的力载荷为例,给出三维电磁固体方形裂纹问题的解。运用迭代方法,求解在非均匀载荷作用下裂纹张开模型的解。作为特例,给出抛物线型载荷作用下二维裂纹问题的数值解。Based on the extended Crouch fundamental solution and the extended displacement discontinuity boundary element method (EDDBEM), the extended stress intensity factors, the electric displacement and the magnetic induction in crack cavity are calculated in a magnetoelectroelastic medium under non-uniformly distributed loadings on crack faces. The effects of electrically and magnetically impermeable and permeable boundary conditions on solution are studied. As an example, a square crack in a 3D magnetoelectroelastic solid under linearly distributed mechanical loading is analyzed under different electrical and magnetic boundary conditions. Considering crack opening under applied loadings and the electric and magnetic fields in crack cavity, the problem is typically non-liner. An iterative approach is adopted to obtain the numerical solution. Simultaneously, the extended intensity factors of cracks in 2D magnetoelectroelastic media under quadric distributed loading are calculated for electrically and magnetically impermeable and permeable boundary conditions.
关 键 词:电磁固体 非均匀载荷 裂纹 强度因子 广义不连续位移 边界元方法
分 类 号:TB34[一般工业技术—材料科学与工程] O343.2[理学—固体力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.102.140