基于排列的微粒群优化算法  

Algorithm of paricle swarm optimization based on rank

在线阅读下载全文

作  者:潘章明[1] 王占刚[2] 王泽[1] 

机构地区:[1]广东金融学院,广东广州510521 [2]北京交通大学计算机学院,北京100044

出  处:《计算机工程与设计》2009年第10期2444-2446,共3页Computer Engineering and Design

摘  要:针对基本微粒群优化算法(PSO)存在陷入局部最优的问题,提出一种基于排列的改进微粒群算法(RPSO)。该算法对每次迭代过程中的个体历史最优解按照适应值的优劣顺序排列,然后选择若干个较优的个体历史最优解作为候选解,再以概率方式在候选解中确定群体历史最优解的位置。RPSO算法使基本PSO算法易于陷入局部最优的问题,得到有效的缓解。为了分析算法的性能,对几种典型的非线性函数进行了测试。实验结果表明,RPSO算法比基本PSO算法具有更好的寻优能力。A rank-basedparticle swarm optimization (RPSO) algorithm is proposed to overcome the shortcoming of particle swarm optimization (PSO) algorithm, which is easy to fall into local optima. In the proposed algorithm, the best previous solutions of all particles from each iteration are selected and ranked according to their fitness. And the solutions with higher fitness are chosen as candidates for the possible solutions. The optimum solution, and thus its location, was then determined by choosing among the candidates with a probabilistic method. The performance of the new algorithm is compared with the PSO method when applied to benchmark nonlinear programming problems. The new approach is seen to perform better in fmding the global optimum than PSO.

关 键 词:微粒群优化 全局优化 排列 轮盘赌选择 群体智能 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象