机构地区:[1]Shanghai Institute of Applied Mathematics and Mechanics,College of Sciences,Shanghai University [2]Department of Computer Science and Technology,Shanghai Normal University
出 处:《Journal of Shanghai University(English Edition)》2009年第3期233-241,共9页上海大学学报(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No.50278051);Shanghai Pujiang Program(Grant No.07pj14073)
摘 要:In this paper, a nonlinear mathematical model for analyzing dynamical response to the large deformation of piles with initial displacements is firstly established with the arc-coordinate, and it is a set of nonlinear integral-differential equa- tions, in which, the Winkeler model is used to simulate the resistance of the soil to the pile. Secondly, a set of new auxiliary functions are introduced. The differential-integral equations are transformed into a set of nonlinear differential equations, and the differential quadrature method (DQM) and the finite difference method (FDM) are applied to discretize the set of nonlinear equations in the spatial and time domains, respectively. Then, the Newton-Raphson method is used to solve the set of discretization algebraic equations at each time step. Finally, numerical examples are presented, and the dynamical re- sponses to the deformation of piles, including configuration, bending moment and shear force, are graphically illuminated. In calculation, two types of initial displacements and dynamical loads are applied, and the effects of parameters on the dynamical responses of piles are analyzed in detail.In this paper, a nonlinear mathematical model for analyzing dynamical response to the large deformation of piles with initial displacements is firstly established with the arc-coordinate, and it is a set of nonlinear integral-differential equa- tions, in which, the Winkeler model is used to simulate the resistance of the soil to the pile. Secondly, a set of new auxiliary functions are introduced. The differential-integral equations are transformed into a set of nonlinear differential equations, and the differential quadrature method (DQM) and the finite difference method (FDM) are applied to discretize the set of nonlinear equations in the spatial and time domains, respectively. Then, the Newton-Raphson method is used to solve the set of discretization algebraic equations at each time step. Finally, numerical examples are presented, and the dynamical re- sponses to the deformation of piles, including configuration, bending moment and shear force, are graphically illuminated. In calculation, two types of initial displacements and dynamical loads are applied, and the effects of parameters on the dynamical responses of piles are analyzed in detail.
关 键 词:PILE large deformation nonlinear dynamical response initial displacement auxiliary function differential quadrature method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...