检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴强[1]
机构地区:[1]山东工业大学数理系
出 处:《山东工业大学学报》1998年第1期6-10,共5页
摘 要:主要研究了正则图中的k-消去图与图的边连通度之间的关系,从而推广了Bolobás的结果.其结果如下:Ⅰ设G是一个r-正则图,|V(G)|为偶数,λ(G)≥2.若k为一整数,且r/λ≤k≤r-r/λ,则G为k-消去图.Ⅱ设r和k为偶数,2≤k≤r,则每一个r-正则图都为k-消去图.Ⅲ设G为r-正则图,λ(G)=λ≥2,且λ*=2[λ/2]+1.若r为奇数,k为偶数,且使得2≤k≤r-r/λ*,则G为k-消去图.In this paper,we study relations between kdeleted graph and edge connectivity of regular graph and generalize Bollobás results.The main results are the following theorems:Theorem I.Let G be an rregular graph such that |V(G)| is even and λ(G)≥2.If k is an integer and r/λ≤r-r/λ then G is a kdeleted graph.Theorems Ⅱ:Let r and k be even integers,2≤k≤r.Then every rregular graph is a kdeleted graph.Theorems Ⅲ:Let G be a rregular graph with λ(G)=λ≥2 and λ*=2+1.If r is odd and k is even such that 2≤k≤r-r/λ* then G is a kdeleted graph.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.9.5