机构地区:[1]School of Energy Science and Engineering, Central South University [2]Guangxi Branch, Aluminum Corporation of China Limited
出 处:《中国有色金属学会会刊:英文版》2009年第3期724-729,共6页Transactions of Nonferrous Metals Society of China
基 金:Project(50376076) supported by the National Natural Science Foundation of China
摘 要:The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration and aluminum electrolyte temperature was explored through the modeling of heat and mass transfer processes in industrial pre-baked aluminum reduction cells. A coupled heat/mass-balance model was derived theoretically from the mass and energy balance of an electrolysis cell, and then was simplified properly into a practical expression. The model demonstrates that if environmental temperature and Al2O3 concentration keep constant, the excess AlF3 concentration decreases with the aluminum electrolyte temperature linearly and its decrease rate is dependent on the heat transfer property of aluminum electrolyte, side wall and cell shell. Secondly, experiments were conducted on site with two industrial cells in an aluminum electrolysis plant. Excess AlF3 concentration and aluminum electrolyte temperature were obtained simultaneously together with other parameters such as Al2O3, CaF2, MgF2 and LiF concentrations. Results show that the maximum absolute error between the tested value and the calculated value of excess AlF3 concentration using the proposed model is less than 2%. This reveals that the coupled heat/mass-balance model can appropriately characterize the correlation between excess AlF3 concentration and aluminum electrolyte temperature with good accuracy and practicability.The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration and aluminum electrolyte temperature was explored through the modeling of heat and mass transfer processes in industrial pre-baked aluminum reduction cells. A coupled heat/mass-balance model was derived theoretically from the mass and energy balance of an electrolysis cell, and then was simplified properly into a practical expression. The model demonstrates that if environmental temperature and Al2O3 concentration keep constant, the excess AlF3 concentration decreases with the aluminum electrolyte temperature linearly and its decrease rate is dependent on the heat transfer property of aluminum electrolyte, side wall and cell shell. Secondly, experiments were conducted on site with two industrial cells in an aluminum electrolysis plant. Excess AlF3 concentration and aluminum electrolyte temperature were obtained simultaneously together with other parameters such as Al2O3, CaF2, MgF2 and LiF concentrations. Results show that the maximum absolute error between the tested value and the calculated value of excess AIF3 concentration using the proposed model is less than 2%. This reveals that the coupled heat/mass-balance model can appropriately characterize the correlation between excess AlF3 concentration and aluminum electrolyte temperature with good accuracy and practicability.
关 键 词:铝电解质温度 电解质浓度 ALF3 平衡模型 相关性分析 质量 耦合 预焙铝电解槽
分 类 号:TG146.21[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...