Adaptive Robust Tracking Control of Pressure Trajectory Based on Kalman Filter  被引量:7

Adaptive Robust Tracking Control of Pressure Trajectory Based on Kalman Filter

在线阅读下载全文

作  者:CAO Jian ZHU Xiaocong TAO Guoliang YAO Bin 

机构地区:[1]The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China [2]School of Mechanical Engineering, Purdue University, Lafayette IN 47907, USA

出  处:《Chinese Journal of Mechanical Engineering》2009年第3期433-439,共7页中国机械工程学报(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 50775200)

摘  要:When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.

关 键 词:pneumatic servo control adaptive robust control Kalman filter orifice area 

分 类 号:TH133.36[机械工程—机械制造及自动化] TP273.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象