检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:查道南[1] 吴乃森[1] 孙源辉[1] 何涛[1]
机构地区:[1]西北工业大学力学与土木建筑工程学院,陕西西安710072
出 处:《河北工业科技》2009年第3期156-160,共5页Hebei Journal of Industrial Science and Technology
摘 要:极限承载力分析对于拱桥的设计具有十分重要的意义,理想线弹性结构的理论屈服强度通常采用特征值屈曲分析法得到,但结构材料非线性和几何非线性却使得结构通常无法达到其理论强度极值。利用大型有限元软件ANSYS,同时采用3种分析极限承载力的方法(特征值屈曲法、几何非线性法与同时考虑几何非线性和材料非线性法),对宁波城庄大桥主跨部分进行极限承载力计算分析。分析结果表明,在计算桁式拱桥极限承载力时考虑双重非线性方法求解极限承载力得出的结果比线性方法更符合实际的工程情况。The analysis of the ultimate load-carrying capacity is of important significance for the design of arch bridge. The the- oretical yield strength of ideally linear and elastic structure is often obtained by the method of eigenvalue bucking analysis, but usually the structure can not reach its theoretical maximum strength of load-carrying capacity because of structural material nonlinearities and geometric nonlinearities. By the ANSYS in this paper, three methods for evaluation of the ultimate load-car- rying capacity (linearity, geometric nonlinearity, material nonlinearity and geometric nonlinearity) were considered in the main arch of the trussed steel through arch bridge ( Ningbo Chengzhuang Bridge). The results show that the double nonlinearities is more fit to the situation of the actual construction than the linearity in computing the stability coefficient and the ultimate load- carrying capacity of the long-span steel truss rib through arch bridge.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249