检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《建筑结构学报》2009年第3期95-102,共8页Journal of Building Structures
基 金:国家自然科学基金资助项目(50478013)
摘 要:进行了全跨竖向均布荷载和半跨竖向均布荷载作用下焊接工字形截面两铰抛物线钢拱平面内稳定承载力试验研究。通过试验揭示了抛物线钢拱平面内的失稳破坏机理,全跨竖向均布荷载作用下抛物线钢拱发生不完全反对称的平面内失稳破坏,半跨竖向均布荷载作用下抛物线钢拱发生反对称的平面内失稳破坏;半跨竖向均布荷载作用下抛物线钢拱的稳定承载能力低于全跨竖向均布荷载作用下的稳定承载能力;试验结果与有限元法分析结果进行了对比,二者吻合良好,有限元法研究钢拱的平面内稳定具有很高的精度;试验结果验证了工字形截面抛物线钢拱平面内稳定性设计方法安全可靠,可供设计使用。The in-plane inelastic stability load-carrying capacity of welded I-section two-hinged steel parabolic arches with rise-to-span ratio of 0. 3 and 0. 2 under both full and half span vertical load uniformly distributed on a horizontal projection respectively is investigated experimentally. Experimental results obtained illustrate that steel parabolic arches under the full span uniformly distributed load buckles non-symmetrically, and that steel parabolic arches under the half span uniformly distributed load buckles anti-symmetrically. It is verified that the arch under the half span load reaches its limit state at a lower load than that of the arch under the full span load. Comparison shows that the ultimate loads predicted by the numerical analysis are well close to those obtained by the experiment. Numerical analyses are accurate enough to investigate the in-plane stability behavior and to predict the ultimate load-carrying capacity of steel parabolic arches. This indicates the numerical research on the arch stability behavior can obtain more valuable theoretical results to direct practical stability design of steel arches.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.23.110