检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学通信与信息工程学院,上海200072
出 处:《计算机仿真》2009年第6期228-231,253,共5页Computer Simulation
摘 要:对人脸进行检测与跟踪是诸如人机交互、视频监控等众多应用的基础。在众多方法当中,连续自适应均值偏移(Con-tinuously Adaptive Mean Shift,简称Camshift)算法在兼具良好跟踪性能的同时做到了较低的计算成本。然而在经典Camshift算法中,反映像素类肤色概率的"反向投影图"会受到初始搜索框内背景像素的影响,是几乎所有基于经典Camshift的算法中普遍存在的一个问题。针对反向投影图的原理进行分析,并采用人脸检测结果作为替代方案,从而对传统Camshift算法进行改进。同时,对YCrCb色彩空间中的人脸检测进行多时段分析,并借此自动确定初始跟踪区域,较传统Camshift算法具有更好的效果。The detection and tracking of face play a basic role in many applications such as interaction between computer and human, video surveillance and so on. Despite so many methods of tracking, Camshift meets not only the requirement of high quality hut also the need of low complexity at the same time. However, the hack - projection which shows the skin -like probability would be affected by pixels belonging to the background in initial searching window. And this is an universal problem existing in most of Camshift - based algorithms. This paper mainly analyzes the principle of back - projection and then uses the result of face detection instead to improve the performance of classic Camshift. Meanwhile, initial search window is automatically set also by the detection of face in YCrCb color space in different time periods and the whole process presents a better result compared with the classic one.
关 键 词:人脸跟踪 连续自适应均值偏移算法 反向投影图 肤色检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222