检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《海军工程大学学报》2009年第3期79-83,共5页Journal of Naval University of Engineering
摘 要:提出了一种阈值化技术与形态学方法相结合的SAR图像阴影区分割方法。该方法首先通过寻找图像平均强度最小的子区域对阴影区域进行初始分割,之后进行图像翻转、阈值化处理,最后利用形态学处理消除虚假像素,进行简单的连通性滤波,实现阴影区的自动分割。给出了3种图像分割评价准则,并基于计算机仿真和图像分割评价准则验证了该阴影区分割方法的有效性。SAR imaging has shown the ability to identify targets at long ranges in adverse conditions. A recent thrust is to use the shadow information present in SAR imagery to identify the target. Clearly, it is essential to segment the shadow region from SAR image firstly. A SAR image shadow region segmentation method was presented based on morphology. The method segmented the shadow region originally. Then, morphological operations were used to perform some simple connectivity filtering to smooth the image and remove spurious pixels. And the shadow region was segmented automatically. To assess the shadow segmentation results, some target segmentation evaluation metrics were presented. The simulation results and target segmentation evaluation metrics show that the approach is effective.
关 键 词:SAR图像 目标识别 阴影区分割 形态学 图像分割评价准则
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30