检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向洪波[1] 郭志华[2] 赵占轻[1] 王建力[1]
机构地区:[1]西南大学地理科学学院,重庆400715 [2]中国林业科学研究院森林生态环境与保护研究所,北京100091
出 处:《林业科学》2009年第6期139-144,共6页Scientia Silvae Sinicae
基 金:国家自然科学基金重大项目(30590383);十一五科技支撑项目(2006BAD03A04、2006BAD03A16);国家自然科学基金重大研究计划(90211006)项目资助
摘 要:总结不同空间尺度森林叶面积指数(LAI)的估算方法,并讨论这些估算方法的优缺点与发展趋势:通过地面实测来估算小尺度的森林LAI,包括破坏性采样法、落叶收集法、异速生长方程法、光学仪器法和倾斜点嵌块法;通过遥感反演估算区域乃至全球尺度的森林LAI,包括统计模型法、基于冠层物理特征与反射特性的冠层反射模型法、人工神经网络技术及查表法。This paper mainly reviewed the methods for estimating forest leaf area index (LAI) in different space scales, their advantage and disadvantage as well as their development trends are also discussed in this paper. The forest LAI in a small scale can be achieved by measuring it in situ for which there are five ground-based methods including destructive harvesting method, leaf litter collection, allometric equation, optical measurements and inclined point quadrat. On a regional or global scale, the forest LAI can be estimated by remote sensing. These methods involved in the statistical modeling technique, canopy reflectance models which base on modeling the relationships between canopy characteristics and reflectance, artificial neural network model, and look-up table.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229