双混沌神经网络及其在优化问题中的应用  被引量:2

Neural network with double chaotic mechanism and its application in optimization

在线阅读下载全文

作  者:任海鹏[1,2] 陈玲娟[1] 韩崇昭[2] 

机构地区:[1]西安理工大学自动化与信息工程学院,陕西西安710048 [2]西安交通大学电子与信息工程学院,陕西西安710049

出  处:《系统工程与电子技术》2009年第6期1366-1371,共6页Systems Engineering and Electronics

基  金:国家自然科学基金项目(60804040);霍英东教育基金项目(111065);中国博士后基金项目(200801431);陕西省自然科学基金项目(2007F017)资助课题

摘  要:分析了三种现有的混沌神经网络模型的优化性能,针对目前混沌神经网络收敛率不高和搜索时间较长的问题提出了一种双混沌神经网络。它不同于以往的混沌神经网络改进方法,不是延长退火时间或改变混沌程度来提高网络性能,而是通过混沌迭代搜索使混沌神经网络在有限步内找到全局最优解的初值来提高收敛率与收敛速度。这种方法能使混沌神经网络在应用中具有更好的全局优化能力,并且可以缩短混沌神经网络的搜索时间,对旅行商问题求解的仿真对比和函数优化问题的仿真,说明了新方法比现有方法具有更好的收敛率和更短的搜索时间。Three existing chaotic neural network models and their optimization performances are analyzed, and then a novel chaotic neural network with double chaotic mechanism is proposed to solve the problem of the lower convergence rate and long search time in the existing method. It is different from the other modified cha- otic neural networks in the aspect that it doesn't enlarge the annealing time or enhance the chaos, but seeks the better initial value that can lead to the global optimized solution in limited steps by means of chaotic iterations. The new method can get better global optimization ability. The controlled numerical experiment with the travel salesman problems (TSP) and the function optimization prove that the proposed method has better convergence rate and shorter search time.

关 键 词:暂态混沌神经网络 模拟退火 混沌迭代 双混沌神经网络 旅行商问题 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] N941[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象