检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学电子与信息学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2009年第5期43-48,共6页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(60472006);广东省自然科学基金团队研究项目(04205783)
摘 要:针对虹膜图像的特点和现有虹膜识别算法运算速度慢及鲁棒性差的问题,为提高虹膜识别的性能,提出了一种新的虹膜图像预处理方法.首先采用最小二乘法定位虹膜内边缘和检测上下眼睑,利用改进的随机Hough变换定位外边缘;然后运用双阈值法检测睫毛,并对分割出的环状虹膜区域进行归一化和去噪与增强处理.预处理后的图像基本上不含眼睑和睫毛等干扰,从而有利于后续的虹膜特征提取和匹配.测试结果表明,该方法可有效地解决图像预处理中计算时间长和通用性差的问题,能提高虹膜识别系统的稳定性和识别率.The existing iris recognition algorithms are of low executing speed and poor robustness. In order to im- prove the accuracy of iris recognition, a novel preprocessing approach is proposed according to the characteristics of iris images. In this approach, first, the least square method is used to locate the inner iris boundary and to test the eyelid. Next, the improved randomized Hough transform is adopted to locate the outer iris boundary. Then, the double-threshold method is employed to detect the eyelash. Finally, a normalizing, de-noising and enhancing process is performed for the circular iris image. The iris image after the preprocessing basically eliminates the dis- turbance of eyelid and eyelash, thus facilitating the following extraction and matching of iris features. Experimental results demonstrate that the proposed approach effectively overcomes the long runtime and the poor generality in image preprocessing, and improves the stability and accuracy of iris recognition system.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.202.216