检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工业大学安全工程研究所江苏省城市与工业安全重点实验室,南京210009
出 处:《燃烧科学与技术》2009年第3期266-272,共7页Journal of Combustion Science and Technology
基 金:国家自然科学基金资助项目(29936110);新世纪优秀人才支持计划资助项目(NCET-05-0505)
摘 要:分别以基于Xu指数的原子类型AI指数和电性拓扑状态指数作为分子结构描述符表征80个液态烃的分子结构特征,并分别结合人工神经网络和多元线性回归方法,对这80个液态烃的燃烧热进行定量结构-性质相关性建模和预测研究.结果表明,基于Xu指数的原子类型AI指数能更好地表征液态烃物质的分子结构特征,且液态烃燃烧热与分子结构间的线性关系要强于非线性关系.所建立的最佳预测模型为基于Xu指数的原子类型AI指数多元线性回归模型,其模型复相关系数为0.999,对测试集的平均预测相对误差为0.637%,模型预测值与实验值具有较好的一致性.Both Xu index based atom-type AI indices and electrotopological state indices were used to describe the structures of 80 liquid hydrocarbon molecules, and quantitative structure-property relationship(QSPR) models were developed to predict the heat of combustion of those 80 liquid hydrocarbon by using the artificial neural network and the multilinear regression approach, respectively. The results show that the characteristics of liquid hydrocarbon molecular structures can be better described by Xu index based atom-type AI indices. Furthermore, the linear relationship between the heat of combustion of liquid hydrocarbon and molecular structure is more obvious than the nonlinear relationship. The optimal model was obtained by combining of atom-type AI indices and multi-linear regression, whose correlation coefficient and average relative errors for the testing set were 0.999 and 0. 637% respectively. The predicted values of the models are in good agreement with the experimental data.
关 键 词:原子类型AI指数 电性拓扑状态指数 定量结构-性质相关性 液态烃 燃烧热 预测
分 类 号:X931[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.169