检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈小兰[1] 熊立华[1] 万民[1] 盖永岗[1]
机构地区:[1]武汉大学水资源与水电工程科学国家重点实验室,武汉430072
出 处:《水力发电学报》2009年第3期5-9,68,共6页Journal of Hydroelectric Engineering
基 金:霍英东青年教师基金(101077);国家自然科学基金(50409008);教育部新世纪优秀人才支持计划(NCET-05-0624)资助
摘 要:宏观进化多目标遗传算法(macro-evolutionary multi-objective genetic algorithm,简称MMGA),是一种新的高等物种进化算法,它可以避免传统遗传算法(genetic algorithm,简称GA)在选择过程中出现的早熟收敛现象。MMGA是综合宏观进行化算法(macro-evolutionary algorithm,简称MA)与GA而形成的,该算法的特点是引进了MA算法中的种群间关联矩阵。利用种群间的适应度信息和个体间的距离信息,能够保持种群的多样性,为解决多目标规划问题提供了一条新的途径。本文将介绍MMGA算法的原理及步骤,并将其用到水库多目标优化调度中。Macro-evolutionary multi-objective genetic algorithm is a new kind of algorithm inspired by the high-level species evolution, which can avoid the premature convergence that arise during the selection process of conventional GA. MMGA is an integration of macro-evolutionary algorithm(MA) and genetic algorithm(GA). By introducing it into the connectivity matrix W between species in MA, it can utilize the fitness information between species and the distance information between individuals. Consequently the diversity of the solutions can be maintained, thus provides a new alternative to solve the multi-objective optimization problem. The principle and solution step of MMGA is introduced and applied to the multi-objective optimization of reservoir operation.
分 类 号:TV697.12[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222