检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学电子商务与现代物流实验室,重庆400065
出 处:《计算机应用与软件》2009年第6期72-74,95,共4页Computer Applications and Software
基 金:重庆市自然科学基金重点项目(2008BA2017)
摘 要:随着电子商务的发展,以"客户为中心"已成为电子商务企业的经营策略,而任何高效的客户关系管理都是以扎实的客户分类为基础。然而电子商务中所搜集到的客户信息往往具有海量、高维度和不完备等特点,如何对其正确、高效地分类是一个难题。根据电子商务客户信息的特点,构建B2C客户分类模型,提出了先对客户信息进行主成分分析以消除属性之间的依赖性,而后用朴素贝叶斯算法进行分类的新方法。实验表明了该方法的有效性。With the development of e-commerce,"customer-eentred" has become the operating strategy of e-commerce companies,and any efficient customer relationship management is based on solid customer classification. However, customers' information collected in e-commerce is always huge,muhi-dimension and incomplete, how to classify the information properly and efficiently is a hard problem. According to the characteristics of e-connneree customers,a model of B2C customer elassification was established in the paper. A new method was put forward as well,in it the principal components analysis on customer information is performed first for removing dependence between the attributes,and then the customers are classified with ha? ve Bayes algorithm. Experiments illustrate the efficiency of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70