基于网格距离的高精度聚类算法  被引量:4

GRID DISTANCE-BASED HIGH-PRECISION CLUSTERING ALGORITHM

在线阅读下载全文

作  者:孟建良[1] 程伟想[1] 牛为华[1] 

机构地区:[1]华北电力大学计算机学院,河北保定071003

出  处:《计算机应用与软件》2009年第6期262-264,共3页Computer Applications and Software

摘  要:为了提高基于网格聚类技术的聚类精度和效率,提出一种新的基于网格距离的高精度聚类算法。该算法一方面通过参考网格在逻辑空间的相对距离进行聚类,从而弥补了大多数计算网格之间距离的算法中需要大量数学运算的不足,另一方面,提出了一种新的边界点处理技术。用实际数据集进行的,实验结果表明,该技术能够有效地提取有意义的边界点,运行速度快、聚类精度高。In order to improve the precision and efficiency of the grid-based clustering technology, in the paper it presents a new high-precision clustering algorithm based on distance between grids. On one hand, the algorithm deals with datasets by referring relative distances between grids in logic space, which makes up the deficiency of some algorithms that need much mathematical operation to support. On the other hand, it presents a new technique to deal with boundary points of clusters. Besides, the experiment has been carried out with real datasets, the result shows that the algorithm is efficient in picking up the meaningful boundary points with precise clustering and fast running time.

关 键 词:聚类 网格 算法 精度 网格距离 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP393[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象