检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DAN Yong-ping ZOU Xue-cheng LIU Zheng-lin HAN Yu YI Li-hua
机构地区:[1]The Department of Eleetric Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China [2]Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430007, China
出 处:《The Journal of China Universities of Posts and Telecommunications》2009年第2期72-79,共8页中国邮电高校学报(英文版)
基 金:supported by the Hi-Tech Research and Development Program of China(2006AA01Z226);the Research Foundation of Huazhong University of Science and Technology(2006Z001B)
摘 要:In this article, a parallel hardware processor is presented to compute elliptic curve scalar multiplication in polynomial basis representation. The processor is applicable to the operations of scalar multiplication by using a modular arithmetic logic unit (MALU). The MALU consists of two multiplications, one addition, and one squaring. The two multiplications and the addition or squaring can be computed in parallel. The whole computations of scalar multiplication over GF(2^163) can be performed in 3 064 cycles. The simulation results based on Xilinx Virtex2 XC2V6000 FPGAs show that the proposed design can compute random GF(2^163) elliptic curve scalar multiplication operations in 31.17 μs, and the resource occupies 3 994 registers and 15 527 LUTs, which indicates that the crypto-processor is suitable for high-performance application.In this article, a parallel hardware processor is presented to compute elliptic curve scalar multiplication in polynomial basis representation. The processor is applicable to the operations of scalar multiplication by using a modular arithmetic logic unit (MALU). The MALU consists of two multiplications, one addition, and one squaring. The two multiplications and the addition or squaring can be computed in parallel. The whole computations of scalar multiplication over GF(2^163) can be performed in 3 064 cycles. The simulation results based on Xilinx Virtex2 XC2V6000 FPGAs show that the proposed design can compute random GF(2^163) elliptic curve scalar multiplication operations in 31.17 μs, and the resource occupies 3 994 registers and 15 527 LUTs, which indicates that the crypto-processor is suitable for high-performance application.
关 键 词:elliptic curve cryptography scalar multiplication finite field parallel design high performance
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术] TN918.1[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.107.255