机构地区:[1]Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy ofSciences, Changchun 130033, China [2]Heping Campus, Jilin University, Changchun 130033, China [3]Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
出 处:《Science in China(Series F)》2009年第7期1266-1271,共6页中国科学(F辑英文版)
基 金:Supported partially by the National Natural Science Foundation of China (Grant Nos. 60636020, 60676034, 60577003, 60706007)
摘 要:According to the theory of DBR, with the P-type DBR as an example, the electrical characteristics and optical reflection of the DBR are analyzed by studying the energy band structure with various graded region widths and doping densities. The width and doping density of graded region are decided through a comparative study. The P-type DBR of 980 nm VCSELs is designed with Al0.9Ga0.1As and Al0.1Ga0.9As selected as the high and low refractive index material for the DBR. The 980 nm bottom VCSELs, which consists of 30 pairs P-type DBR and 28 pairs N-type DBR, are then fabricated. In P-type DBR, the width of graded region is 0.02 μm and the uniformity doping concentration is 2.5×10^18cm^-3. Its reflectivity is 99.9%. In N-type DBR, the width of graded region is also 0.02 μm and the uniformity doping concen- tration is 2×10^18cm^-3. Its reflectivity is 99.3%. The I-V curve shows that the series resistance of the device is about 0.05Ω. According to the theory of DBR, with the P-type DBR as an example, the electrical characteristics and optical reflection of the DBR are analyzed by studying the energy band structure with various graded region widths and doping densities. The width and doping density of graded region are decided through a comparative study. The P-type DBR of 980 nm VCSELs is designed, with Al0.9Ga0.1As and Al0.1Ga0.9As selected as the high and low refractive index material for the DBR. The 980 nm bottom VCSELs, which consist of 30 pairs P-type DBR and 28 pairs N-type DBR, are then fabricated. In P-type DBR, the width of graded region is 0.02μm and the uniformity doping concentration is 2.5×10^18cm^-3. Its reflectivity is 99.9%. In N-type DBR, the width of graded region is also 0.02 μm and the uniformity doping concentration is 2×10^18cm^-3. Its refiectivity is 99.3%. The I-V curve shows that the series resistance of the device is about 0.05Ω.According to the theory of DBR, with the P-type DBR as an example, the electrical characteristics and optical reflection of the DBR are analyzed by studying the energy band structure with various graded region widths and doping densities. The width and doping density of graded region are decided through a comparative study. The P-type DBR of 980 nm VCSELs is designed with Al0.9Ga0.1As and Al0.1Ga0.9As selected as the high and low refractive index material for the DBR. The 980 nm bottom VCSELs, which consists of 30 pairs P-type DBR and 28 pairs N-type DBR, are then fabricated. In P-type DBR, the width of graded region is 0.02 μm and the uniformity doping concentration is 2.5×10^18cm^-3. Its reflectivity is 99.9%. In N-type DBR, the width of graded region is also 0.02 μm and the uniformity doping concen- tration is 2×10^18cm^-3. Its reflectivity is 99.3%. The I-V curve shows that the series resistance of the device is about 0.05Ω. According to the theory of DBR, with the P-type DBR as an example, the electrical characteristics and optical reflection of the DBR are analyzed by studying the energy band structure with various graded region widths and doping densities. The width and doping density of graded region are decided through a comparative study. The P-type DBR of 980 nm VCSELs is designed, with Al0.9Ga0.1As and Al0.1Ga0.9As selected as the high and low refractive index material for the DBR. The 980 nm bottom VCSELs, which consist of 30 pairs P-type DBR and 28 pairs N-type DBR, are then fabricated. In P-type DBR, the width of graded region is 0.02μm and the uniformity doping concentration is 2.5×10^18cm^-3. Its reflectivity is 99.9%. In N-type DBR, the width of graded region is also 0.02 μm and the uniformity doping concentration is 2×10^18cm^-3. Its refiectivity is 99.3%. The I-V curve shows that the series resistance of the device is about 0.05Ω.
关 键 词:VCSEL DBR component graded series resistance REFLECTIVITY
分 类 号:TN248[电子电信—物理电子学] TU375.404[建筑科学—结构工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...