检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学,南京210016
出 处:《中国机械工程》2009年第13期1582-1586,共5页China Mechanical Engineering
基 金:国际科技合作项目(2008DFA71750);国家科技支撑计划重点项目(2008BAF32B00)
摘 要:针对高速铣削淬硬钢加工中的刀具磨损问题,运用时域平均、离散小波分析以及希尔伯特变换等信号处理技术来提取切削力信号中与刀具磨损密切相关的特征量,并基于马氏距离法对刀具磨损状态进行监测识别。用硬铣削试验验证了该监测策略的有效性。When high--speed milling (HSM) technology was applied to the cutting processes ot steels in their hardened states, drastical reduction of tool life is a big problem. In order to identify the state of the tool wear accurately and promptly, combinations of signal processing techniques, such as time--domain averaging, discrete wavelet transform and Hilbert spectrum analysis were adopted for extracting relevant features from the measured force signals. Tool conditions were identified directly through the recognition of these features by means of Mahalanobis distance method. Practical application results on a CNC vertical milling machine show that the proposed method is accurate for feature extraction and efficient for condition monitoring of the cutting tools.
分 类 号:TG506.1[金属学及工艺—金属切削加工及机床] TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222