高速硬铣削加工刀具磨损监测研究  被引量:5

Monitoring of Tool Wear in Hard Milling Process

在线阅读下载全文

作  者:申志刚[1] 何宁[1] 李亮[1] 

机构地区:[1]南京航空航天大学,南京210016

出  处:《中国机械工程》2009年第13期1582-1586,共5页China Mechanical Engineering

基  金:国际科技合作项目(2008DFA71750);国家科技支撑计划重点项目(2008BAF32B00)

摘  要:针对高速铣削淬硬钢加工中的刀具磨损问题,运用时域平均、离散小波分析以及希尔伯特变换等信号处理技术来提取切削力信号中与刀具磨损密切相关的特征量,并基于马氏距离法对刀具磨损状态进行监测识别。用硬铣削试验验证了该监测策略的有效性。When high--speed milling (HSM) technology was applied to the cutting processes ot steels in their hardened states, drastical reduction of tool life is a big problem. In order to identify the state of the tool wear accurately and promptly, combinations of signal processing techniques, such as time--domain averaging, discrete wavelet transform and Hilbert spectrum analysis were adopted for extracting relevant features from the measured force signals. Tool conditions were identified directly through the recognition of these features by means of Mahalanobis distance method. Practical application results on a CNC vertical milling machine show that the proposed method is accurate for feature extraction and efficient for condition monitoring of the cutting tools.

关 键 词:高速铣削 小波分析 希尔伯特变换 马氏距离 

分 类 号:TG506.1[金属学及工艺—金属切削加工及机床] TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象