检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute of Nonlinear Dynamics, Xi 'an Jiaotong University, Xi 'an 710049
出 处:《Chinese Physics Letters》2009年第7期58-61,共4页中国物理快报(英文版)
基 金:Supported by Natural Science Foundation of China under Grant No 10432010.
摘 要:A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itseff in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle.A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itseff in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195