New Canards Bursting and Canards Periodic-Chaotic Sequence  

New Canards Bursting and Canards Periodic-Chaotic Sequence

在线阅读下载全文

作  者:岳志锋 徐健学 张新华 

机构地区:[1]Institute of Nonlinear Dynamics, Xi 'an Jiaotong University, Xi 'an 710049

出  处:《Chinese Physics Letters》2009年第7期58-61,共4页中国物理快报(英文版)

基  金:Supported by Natural Science Foundation of China under Grant No 10432010.

摘  要:A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itseff in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle.A trajectory following the repelling branch of an equilibrium or a periodic orbit is called a canards solution. Using a continuation method, we find a new type of canards bursting which manifests itseff in an alternation between the oscillation phase following attracting the limit cycle branch and resting phase following a repelling fixed point branch in a reduced leech neuron model Via periodic-chaotic alternating of infinite times, the number of windings within a canards bursting can approach infinity at a Gavrilov-Shilnikov homoclinic tangency bifurcation of a simple saddle limit cycle.

关 键 词:sea surface nonliear interaction numerical method 

分 类 号:O415.5[理学—理论物理] TP391.41[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象