Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric  被引量:1

Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric

在线阅读下载全文

作  者:于爱芳 祁琼 江鹏 江潮 

机构地区:[1]National Center for Nanoscience and Nanotechnology, No. 11, Beiyitiao Zhongguancun, Beijing 100190

出  处:《Chinese Physics Letters》2009年第7期369-371,共3页中国物理快报(英文版)

摘  要:Carrier mobifity enhancement from 0.09 to 0.59cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the Hf02 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HI02 surface, the Stranski- Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.Carrier mobifity enhancement from 0.09 to 0.59cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the Hf02 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HI02 surface, the Stranski- Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.

分 类 号:TN321.5[电子电信—物理电子学] TN386

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象